Carcass wrote:
Which of the following is equal to \(\left( \begin{array}{cc}\frac{\sqrt{12}}{5}\end{array} \right)\)\(\left( \begin{array}{cc}\frac{\sqrt{60}}{2^4}\end{array} \right)\)\(\left( \begin{array}{cc}\frac{\sqrt{45}}{3^2}\end{array} \right)\) ?
A. \(\frac{1}{12}\)
B. \(\frac{1}{6}\)
C. \(\frac{1}{4}\)
D. \(\frac{1}{3}\)
E. \(\frac{1}{2}\)
Given: \(\left( \begin{array}{cc}\frac{\sqrt{12}}{5}\end{array} \right)\)\(\left( \begin{array}{cc}\frac{\sqrt{60}}{2^4}\end{array} \right)\)\(\left( \begin{array}{cc}\frac{\sqrt{45}}{3^2}\end{array} \right)\)
Simplify each root to get: \(\left( \begin{array}{cc}\frac{2\sqrt{3}}{5}\end{array} \right)\)\(\left( \begin{array}{cc}\frac{2\sqrt{15}}{2^4}\end{array} \right)\)\(\left( \begin{array}{cc}\frac{3\sqrt{5}}{3^2}\end{array} \right)\)
Multiply the numerators and the denominators: \(\frac{12\sqrt{225}}{(5)(2^4)(3^2)}\)
Simplify the numerator: \(\frac{(12)(15)}{(5)(2^4)(3^2)}\)
Rewrite the numerator as follows: \(\frac{(2^2)(3^2)(5)}{(2^4)(3^2)(5)}\)
Simplify: \(\frac{1}{2^2} = \frac{1}{4}\)
Answer: C