GreenlightTestPrep wrote:
\(2^2 - 4^2 + 6^2 - 8^2 + 10^2 - 12^2 + 14^2 - 16^2 + 18^2 - 20^2 =\)
A) -40
B) -110
C) -220
D) -440
E) -880
Here's an approach that uses
differences of squares 2² - 4² + 6² - 8² + 10² - 12² + 14² - 16² + 18² - 20² = (2² - 4²) + (6² - 8²) + (10² - 12²) + (14² - 16²) + (18² - 20²)
=
(2 - 4)(2 + 4) +
(6 - 8)(6 + 8) +
(10 - 12)(10 + 12) +
(14 - 16)
(14 + 16) +
(18 - 20)(18 + 20) =
(-2)(2 + 4) +
(-2)(6 + 8) +
(-2)(10 + 12) +
(-2)(14 + 16) +
(-2)(18 + 20) =
-2[
(2 + 4) +
(6 + 8) +
(10 + 12) +
(14 + 16) +
(18 + 20) ]
=
-2(6 + 14 + 22 + 30 + 38)=
-2(110)= -220
Answer: C
Cheers,
Brent