Re: The circumference of circle C is equal to the perimeter of square S. I
[#permalink]
03 Aug 2025, 22:35
Let:
- $r=$ radius of the circle,
- $a=$ side length of the square,
- $z=$ area of the circle.
We are told that the circumference of circle $C$ equals the perimeter of square $S$ :
$$
\(2 \pi r=4 a\) .
$$
Solve for $a$ :
$$
\(a=\frac{2 \pi r}{4}=\frac{\pi r}{2}\)
$$
The area of the circle is:
$$
\(z=\pi r^2\)
$$
We want the area of the square:
$$
\(\text { Area of square }=a^2=\left(\frac{\pi r}{2}\right)^2=\frac{\pi^2 r^2}{4}\)
$$
Since $\(r^2=\frac{z}{\pi}\)$, substitute:
$$
\(a^2=\frac{\pi^2}{4} \times \frac{z}{\pi}=\frac{\pi z}{4} .\)
$$
Final answer:
$$
\(\frac{\pi z}{4}\),
$$
which corresponds to option C .