Re: The circumference of the circle above is 30
[#permalink]
29 Jul 2025, 12:37
Given:
- The circumference of the circle is 30 .
- Quantity A: length of chord $A B$.
- Quantity B: 10.
Step 1: Find the radius of the circle
Circumference $\(C=2 \pi r\)$ :
$$
\(30=2 \pi r \Longrightarrow r=\frac{30}{2 \pi}=\frac{15}{\pi}\)
$$
Numerical approximation:
$$
\(r \approx \frac{15}{3.1416} \approx 4.7746\)
$$
Step 2: Calculate the diameter
$$
\(\text { Diameter }=2 r \approx 2 \times 4.7746=9.5492\)
$$
Step 3: Analyze chord $A B$
- The maximum possible chord length in a circle is the diameter.
- So, length of chord $\(A B \leq 9.55\)$ (approx).
Step 4: Compare Quantities
- Quantity A (chord $A B$ ) $\(\leq 9.55\)$
- Quantity $\(\mathrm{B}=10\)$
Since $9.55<10$,
Quantity B is greater than Quantity A.