Carcass wrote:
\(r=6s\) and \(s=3t\) and \(2t=p\)
If \(p \neq 0\), what is the value of \(\frac{p}{r}\) for the system of equations above ?
Find some values that satisfy the given equations.
Start with \(s=3t\) and \(2t=p\)
If \(t=1\), then \(s=3\) and \(p=2\)
Now we can deal with \(r=6s\)
Since \(s=3\), we know that \(r=18\)
Since the values \(t=1\), \(s=3\), \(p=2\) and \(r=18\) satisfy all of the given equations, we can now answer the question...
\(\frac{p}{r}=\frac{2}{18}=\frac{1}{9}\)
Answer: 1/9
Cheers,
Brent