sandy wrote:
\(\frac{(10^3)(0.027)}{(900)(10^{-2})}=(3)(10^m)\)
Quantity A |
Quantity B |
m |
3 |
A)The quantity in Column A is greater.
B)The quantity in Column B is greater.
C)The two quantities are equal.
D)The relationship cannot be determined from the information given.
GIVEN: \(\frac{(10^3)(0.027)}{(900)(10^{-2})}=(3)(10^m)\)
Rewrite some values: \(\frac{(10^3)(27)(10^{-3})}{(9)(100)(10^{-2})}=(3)(10^m)\)
Rewrite more values: \(\frac{(10^3)(3^3)(10^{-3})}{(3^2)(10^2)(10^{-2})}=(3)(10^m)\)
Simplify: \(\frac{(10^0)(3^3)}{(3^2)(10^0)}=(3)(10^m)\)
Simplify: \(\frac{3^3}{3^2}=(3)(10^m)\)
Simplify: \(3=(3)(10^m)\)
This tells us that \(10^m = 1\), which means m = 0
We get:
QUANTITY A: 0
QUANTITY B: 3
Answer: B
Cheers,
Bret