Re: Slope of a line L that passes through
[#permalink]
25 Jul 2025, 09:53
Given:
- The line $\ell$ has slope $\(m=\frac{3}{2}\)$.
- The line passes through the point $(a, b)$.
- Quantities to compare:
- Quantity A: $x$-intercept of line $\(\ell\)$.
- Quantity B: $y$-intercept of line $\(\ell\)$.
Step 1: Equation of the line $\ell$
Using point-slope form:
$$
\(y-b=\frac{3}{2}(x-a)\)
$$
Rearranging to slope-intercept form:
$$
\(y=\frac{3}{2} x-\frac{3}{2} a+b\)
$$
Step 2: Find the $y$-intercept
At $x=0$,
$$
\(y=\frac{3}{2} \cdot 0-\frac{3}{2} a+b=-\frac{3}{2} a+b\)
$$
So
$$
\(y \text {-intercept }=b-\frac{3}{2} a\)
$$
Step 3: Find the $x$-intercept
At $y=0$,
$$
\(0=\frac{3}{2} x-\frac{3}{2} a+b\)
$$
Solve for $x$ :
$$
\(\begin{gathered}
\frac{3}{2} x=\frac{3}{2} a-b \\
x=\frac{\frac{3}{2} a-b}{\frac{3}{2}}=a-\frac{2}{3} b
\end{gathered}\)
$$
So
$$
\(x \text {-intercept }=a-\frac{2}{3} b\)
$$
Step 4: Compare Quantity A and Quantity B
- Quantity A (x-intercept) $\(=a-\frac{2}{3} b\)$
- Quantity B (y-intercept) $\(=b-\frac{3}{2} a\)$
Step 5: Compare
We compare:
$$
\(a-\frac{2}{3} b \quad \text { vs } \quad b-\frac{3}{2} a\)
$$
Bring all to one side:
$$
\(a-\frac{2}{3} b-\left(b-\frac{3}{2} a\right)=a-\frac{2}{3} b-b+\frac{3}{2} a=a+\frac{3}{2} a-\frac{2}{3} b-b=\frac{5}{2} a-\frac{5}{3} b\)
$$
So,
$$
\(\text { Quantity A - Quantity B }=\frac{5}{2} a-\frac{5}{3} b=\frac{5}{6}(3 a-2 b)\)
$$
Conclusion:
- If $\(3 a-2 b>0\)$, then Quantity A $>$ Quantity B.
- If $\(3 a-2 b<0\)$, then Quantity A < Quantity B.
- If $\(3 a-2 b=0\)$, then Quantity A = Quantity B.
Final statement:
Without specific values of $a$ and $b$, we cannot determine a definite relationship between the xintercept and y -intercept. The relationship depends on the sign of $\(3 a-2 b\)$.
If you have any further constraints on $a$ or $b$, I can help refine this. Otherwise, the answer is:
The relationship cannot be determined from the information given.