Carcass wrote:
If \(f(x)=x^2-5\), which of the following must be true ?
select all that apply
A. \(f(-3)=|f(-3)|\)
B. \(f(-2)=-|f(-2)|\)
C. \(f(1)<|f(-1)|\)
D. \(f(0)=|f(0)|\)
E. \(f(2)=|f(2)|\)
A. \(f(-3)=|f(-3)|\)\(f(-3) = (-3)^2 - 5 = 4\)
\(|f(-3)| = |(-3)^2 - 5| = 4\)
B. \(f(-2)=-|f(-2)|\)\(f(-2) = (-2)^2 - 5 = -1\)
\(-|f(-2)| = -|(-2)^2 - 5| = -1\)
C. \(f(1)<|f(-1)|\)\(f(1) = (1)^2 - 5 = -4\)
\(|f(-1)| = |(-1)^2 - 5| = 4\)
D. \(f(0)=|f(0)|\)\(f(0) = (0)^2 - 5 = -5\)
\(|f(0)| = |(0)^2 - 5| = 5\)
E. \(f(2)=|f(2)|\)\(f(2) = (2)^2 - 5 = -1\)
\(|f(2)| = |(2)^2 - 5| = 1\)
Hence, option A, B and C