Carcass wrote:
\(\frac{0.99999999}{1.0001}-\frac{0.99999991}{1.0003}=\)
(A) \(10^{(-8)}\)
(B) \(3*10^{(-8)}\)
(C) \(3*10^{(-4)}\)
(D) \(2*10^{(-4)}\)
(E) \(10^{(-4)}\)
One approach is to combine the fractions and then use some
approximation.
First combine the fractions by finding a
common denominator.
(9999.9999)/
(10001) - (9999.9991)/
(10003)= (9999.9999)
(10003)/
(10001)(10003) - (9999.9991)
(10001) /
(10003)(10001)= [
(10003)(9999.9999) -
(10001)(9999.9991)] /
(10001)(10003)= [
(10003)(
10^4) -
(10001)(
10^4)] /
(10^4)(10^4) ... (approximately)
= [
(10003) -
(10001)] / (10^4)
... (divided top and bottom by 10^4)
= 2/(10^4)
= 2*10^(-4)
= D
Cheers,
Brent