GeminiHeat wrote:
In a decimal, a bar over a digit indicates that the digit repeats indefinitely. If a and b are integers, \((\frac{a}{3} - \frac{b}{4} =\) \(0.41\overline{6})\) and \(a + b = 17,\) what is the value of \(a\)?
(A) 5
(B) 7
(C) 8
(D) 9
(E) 10
\((\frac{a}{3} - \frac{b}{4} =\) \(0.41\overline{6})\)
\(4a - 3b = 12(0.416666...) ≈ 5\) ..... (i)
Given, \(a + b = 17\) ..... (ii)
Solve the Linear equations (Multiplying ii by \(3\) and adding to i);
\(4a - 3b ≈ 5\)
\(3a + 3b = 51\)
\(7a ≈ 56\)
\(a ≈ 8\)
Hence, option C