Carcass wrote:
If \(x ≠ –2\), then \(\frac{8x^2 − 32}{4x + 8}\) =
(A) \(2(x – 2)\)
(B) \(2(x – 4)\)
(C) \(8(x + 2)\)
(D) \(x – 2\)
(E) \(x + 4\)
\(\frac{8x^2 − 32}{4x + 8}=\frac{8(x^2 − 4)}{4(x + 2)}\)
[factored out the greatest common factor from numerator and denominator]\(=\frac{2(x^2 − 4)}{(x + 2)}\)
[simplified fraction]\(=\frac{2(x - 2)(x + 2)}{(x + 2)}\)
[factored that the difference of squares in the numerator]\(=2(x - 2)\)
[simplified fraction]Answer: A