Carcass wrote:
If \(x = 2\) and \(y = –3\), then \(y^2 − (x − [y + \frac{1}{2}])− 2*3 =\)
(A) \(− \frac{39}{2}\)
(B) \(− \frac{3}{2}\)
(C) \(0\)
(D) \(31\)
(E) \(43\)
Plug \(x = 2\) and \(y = –3\) into the expression and evaluate as follows....
\(y^2 − (x − [y + \frac{1}{2}])− 2*3 =(-3)^2 − (2 − [(-3) + \frac{1}{2}])− 2*3 \)
\(=(-3)^2 − (2 − [(\frac{-6}{2}) + \frac{1}{2}])− 2*3 \)
\(=(-3)^2 − (2 − [\frac{-5}{2}])− 2*3 \)
\(=(-3)^2 − (\frac{4}{2} − [\frac{-5}{2}])− 2*3 \)
\(=(-3)^2 − (\frac{9}{2})− 2*3 \)
\(=9 − (\frac{9}{2})− 2*3 \)
\(=9 − (\frac{9}{2})−6 \)
\(=\frac{18}{2} − (\frac{9}{2})−\frac{12}{2} \)
\(=\frac{9}{2} −\frac{12}{2} \)
\(=−\frac{3}{2} \)
Answer: B