Carcass wrote:
A bar above a digit in a decimal indicates an infinitely repeating decimal. \(333,333.\overline {3}*(10^{–3} – 10^{–5})\) =
A. \(3,333.\overline {3}\)
B. \(3,330\)
C. \(333.\overline {3}\)
D. \(330\)
E. \(0\)
Key properties:
Multiplying number K by \(10^n\) (where n is positive) moves the decimal place to the RIGHT n spaces.
Multiplying number K by \(10^{-n}\) (where n is positive) moves the decimal place to the LEFT n spaces. Some examples:
\(1234.567 * 10^{-2} = 12.34567\)
\(123456.7 * 10^{-5} = 1.234567\)
\(8,888,888.\overline {8} * 10^{-4} = 888.\overline {8}\)
Now onto the question!!
We get: \(333,333.\overline {3}*(10^{–3} – 10^{–5}) = 333.\overline {3} - 3.\overline {3}=330\)
Answer: D