Carcass wrote:
\(\frac{(13!)^{16}-(13!)^{8}}{(13!)^8+(13!)^4}=a\), what is the unit digit of \(\frac{a}{(13!)^4}\) ?
A. 0
B. 1
C. 3
D. 5
E. 9
Assume \(13! = x\)
Now, \(a = \frac{x^{16} - x^{8}}{x^{8} + x^{4}}\)
Taking \(x^{8}\) common from the Numerator and \(x^{4}\) from the Denominator:
\(a = \frac{x^{8}(x^{8} - x^{1})}{x^{4}(x^{4} + 1)}\)
Simplify:
\(a = \frac{x^{4}(x^{8} - x^{1})}{(x^{4} + 1)}\)
Break \((x^{8} - x^{1})\) into \((x^{4} + 1)(x^{4} - 1)\)
\(a = \frac{x^{4}(x^{4} + 1)(x^{4} - 1)}{(x^{4} + 1)}\)
\(a = x^{4}(x^{4} - 1)\)
So, \(\frac{a}{x^{4}} = \frac{x^{4}(x^{4} - 1)}{x^{4}} = x^{4} - 1\)
NOTE: \(13! = (13)(12)(11)(10)(9) ..... (1)\), has units digit as \(0\) only
Which means, \((13!)^{4} - 1 = (---------0) - 1 = ----------9\)
Hence, option E