GRE Prep Club Team Member
Joined: 20 Feb 2017
Posts: 2506
Given Kudos: 1055
GPA: 3.39
Re: If x#-1, x^16/{(1+x)*(1+x^2)*(1+x^4)*(1+x^8)
[#permalink]
28 Jan 2023, 09:14
Numerator
\(1 - x^{16}\)
\(= (1 + x^8) (1 - x^8)\)
\(= (1 + x^8) (1 + x^4) (1 - x^4)\)
\(= (1 + x^8) (1 + x^4) (1 + x^2) (1 - x^2)\)
\(= (1 + x^8) (1 + x^4) (1 + x^2) (1 + x) (1 - x)\)
Denominator
\((1 + x^8) (1 + x^4) (1 + x^2) (1 + x)\)
Expanded / simplified equation would be
\(\frac{(1 + x^8) (1 + x^4) (1 + x^2) (1 + x) (1 - x)}{(1 + x^8) (1 + x^4) (1 + x^2) (1 + x)}\)
= 1 - x
Answer: D