Re: What is the area of the triangle $A B C$ if $D$ is the mid-point of $E
[#permalink]
19 Aug 2025, 10:31
Area of the circle $\(\pi r^2=4 \pi \Rightarrow r=2\)$
As E is the centre of the circle, we get $\\(mathrm{AE}=\mathrm{BE}=\)$ radii of the circle $\(=2\)$.
Also as $D$ is the mid - point of $\(E C\)$, we get $\(E D=D C=2\)$, so the length of $\(A C=A E+E D+D C= .2+2+2=6\)$
Finally the area of triangle $\(\mathrm{ABC}=\frac{1}{2} \times\)$ Base $\(\times\)$ Height $\(=\frac{1}{2} \times \mathrm{AC} \times \mathrm{BE}=\frac{1}{2} \times 6 \times 2=6\)$
Hence the answer is (D).