Re: x>2 and y<0
[#permalink]
03 Aug 2025, 09:49
Given:
- $\(x>2\)$ (so $x$ is positive and greater than 2 )
- $\(y<0\)$ (so $y$ is negative)
Analyze each quantity
Quantity A:
$$
\(|x y|-x\)
$$
Since $\(y<0\)$, the product $x y$ is negative (positive times negative).
- $\(x y<0\)$
- $\(|x y|=-(x y)\)$ because $x y$ is negative
So,
$$
\(|x y|=-(x y)\)
$$
Therefore,
$$
\(\text { Quantity } \mathrm{A}=|x y|-x=-(x y)-x\)
$$
Quantity B:
$$
\(x y\)
$$
Now compare A and B:
Calculate:
$$
\(\text { Quantity A - Quantity B }=(-(x y)-x)-(x y)=-x y-x-x y=-2 x y-x\)
$$
Recall that $\(x>2>0\)$ and $\(y<0\)$.
- $\(x y<0 \Longrightarrow x y\)$ is a negative number.
- So $\(-2 x y=-2 \times\)$ (negative) = positive number, since minus times negative is positive.
Let's write:
$$
\(-2 x y-x=\text { positive number }-x\)
$$
Since $\(x>2, x\)$ is positive.
Test a specific example to determine sign:
Choose:
- $\(x=3\)$
- $\(y=-1\)$
Compute $\(x y=3 \times(-1)=-3\)$
Then,
Quantity $\(\mathrm{A}=|x y|-x=|-3|-3=3-3=0\)$
Quantity $\(\mathrm{B}=x y=-3\)$
So,
- Quantity $\(\mathrm{A}=0\)$
- Quantity B = - 3
Thus,
Quantity A > Quantity B.
Pick another set:
- $\(x=4\)$
- $\(y=-0.5\)$
Then:
$$
\(\begin{gathered}
x y=4 \times(-0.5)=-2 \\
\text { Quantity } \mathrm{A}=|-2|-4=2-4=-2
\end{gathered}\)
$$
Quantity $\(B=-2\)$
Here:
- Quantity $\(\mathrm{A}=-2\)$
- Quantity B = -2
So,
Quantity A = Quantity B.
Try another set:
- $\(x=3\)$
- $\(y=-0.1\)$
Then,
$$
\(x y=3 \times(-0.1)=-0.3\)
$$
Quantity $\(\mathrm{A}=|-0.3|-3=0.3-3=-2.7\)$
Quantity $\(\mathrm{B}=-0.3\)$
Here:
- Quantity A = -2.7
- Quantity $\(B=-0.3\)$
Thus,
Quantity A $\(<\)$ Quantity B.
Conclusion:
- There are cases where Quantity A > Quantity B
- There are cases where Quantity A = Quantity B
- There are cases where Quantity A < Quantity B
So, the relationship cannot be determined from the given information.
Final answer:
The relationship cannot be determined.