Carcass wrote:
\(4 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 =\)
A. 2^7
B. 2^8
C. 2^16
D. 2^28
E. 2^29
Look for a
pattern4 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 =
4 + 4 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7
=
8 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7
=
2^3 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7
Now examine the following...
2^3 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 =
8 + 8 + 2^4 + 2^5 + 2^6 + 2^7
=
16 + 2^4 + 2^5 + 2^6 + 2^7
=
2^4 + 2^4 + 2^5 + 2^6 + 2^7
And then...
2^4 + 2^4 + 2^5 + 2^6 + 2^7 =
16 + 16 + 2^5 + 2^6 + 2^7
=
32 + 2^5 + 2^6 + 2^7
=
2^5 + 2^5 + 2^6 + 2^7
In general, 2^n + 2^n = 2^(n+1)
This should make sense since 2^n + 2^n = 2^n(1 + 1) = (2^n)(2^1) = 2^(n+1)
So, continuing with the pattern, we get a TOTAL SUM of 2^8
Answer: B