Carcass wrote:
\(A=\frac{3}{4}-\frac{5}{4}+\frac{9}{4}\)
\(B=\frac{3}{6}-\frac{5}{12}+\frac{7}{24}\)
\(C=\frac{3}{8}+\frac{1}{8}\)
Quantity A |
Quantity B |
C % of (A+B) |
\(\frac{17}{160 }\) |
..
A)The quantity in Column A is greater.
B)The quantity in Column B is greater.
C)The two quantities are equal.
D)The relationship cannot be determined from the information given.
\(A=\frac{3}{4}-\frac{5}{4}+\frac{9}{4} = \frac{(3 - 5 + 9)}{4} = \frac{7}{4}\)
\(B=\frac{3}{6}-\frac{5}{12}+\frac{7}{24} = \frac{(12 - 10 + 7)}{24} = \frac{9}{24} = \frac{3}{8}\)
\(C=\frac{3}{8}+\frac{1}{8} = \frac{4}{8} = \frac{1}{2}\)
Col. A: \(\frac{1}{200}(\frac{7}{4} + \frac{3}{8}) = \frac{1}{200}(\frac{17}{8})\)
Col. B: \(\frac{17}{160 }\)
Cross multiply the denominators;
Col. A: \(160\)
Col. B: \(3400\)
Hence, option B