Carcass wrote:
If \(x\) is a positive integer, which of the following must be odd?
A. \(x+1\)
B. \(x^2+x\)
C. \(x^2+x+1\)
D. \(x^2−1\)
E. \(3x^2−3\)
Remember:(odd)(odd) = odd
(odd)(even) = even
(even)(odd) = even
(even)(even) = even
odd + odd = even
odd + even = odd
even + odd = odd
even + even = even
\(odd^{odd} = odd\)
\(odd^{even} = odd\)
\(even^{odd} = even\)
\(even^{even} = even\)
Now,
When \(x = odd\)
A. \(x+1 = odd + odd = even\)
B. \(x^2+x = odd^2 + odd = odd + odd = even\)
C. \(x^2+x+1 = odd^2 + odd + odd = odd + odd + odd = odd\)D. \(x^2−1 = odd^2 - odd = odd - odd = even\)
E. \(3x^2−3 = 3odd^2 - odd = odd(odd) - odd = odd - odd = even\)
When \(x = even\)
A. \(x+1 = even + odd = odd\)
B. \(x^2+x = even^2 + even = even + even = even\)
C. \(x^2+x+1 = even^2 + even + odd = even + even + odd = odd\)D. \(x^2−1 = even^2 - odd = even - odd = odd\)
E. \(3x^2−3 = 3even^2 - odd = odd(even) - odd = even - odd = odd\)
Hence, option C