GeminiHeat wrote:
Attachment:
Untitled.png
In the diagram (not drawn to scale), Sector PQ is a quarter-circle. The distance from A to P is half the distance from P to B. The distance from C to Q is 2/7 of the distance from Q to B. If the length of AC is 100, what is the length of the radius of the circle with center B?
A.
280√8551B.
240√7061C.
240√6743D.
230√5143E.
220√4351 PB=QB=radius=r (Let us say)
AP=12PBAP=r2AB=AP+PB=r2+r=3r2CQ=27QBCQ=2r7BC=CQ+QB=2r7+r=9r7Since, ABC is a Right angled triangle, we can apply Pythagoras theorem;
AC2=AB2+BC21002=(3r2)2+(9r7)21002=9r24+81r249(4)(49)1002=(9r2)(49)+(81r2)(4)(4)(49)1002=765r2r2=(4)(49)1002765r=√(4)(49)1002765=1400√765r=14003√85Since, we have
√85 in option A - it must be the our Answer!