Re: The function f is defined for each positive three-digit integer n by
[#permalink]
08 Nov 2021, 14:01
Let the 3-digit positive integer \({m}\) be \({abc}\) and positive integer \(v\) be \(rst\). Question: \((100a+10b+c)-(100r+10s+t)=?\).
Then \(f(m)=2^a*3^b*5^c\) and \(f(v)=2^r*3^s*5^t\).
Given: \(f(m)=9*f(v)\) --> \(2^a*3^b*5^c=9*2^r*3^s*5^t\) --> \(2^{a-r}*3^{b-s}*5^{c-t}=3^2\) (or \(2^a*3^b*5^c=2^r*3^{s+2}*5^t\)).
So, \(a-r=0\), \(b-s=2\) and \(c-t=0\) (or \(a=r\), \(b=s+2\) and \(c=t\)) --> \(m-v=(100a+10b+c)-(100r+10s+t)=10b-10(b-2)=20\). For example if \(m\) and \(v\) are 143 and 123 respectively (hundreds and units digit are equal and tens digit of \(m\) is 2 more than tens digit of \(v\)) then \(143-123=20\).
Answer: D.