Re: The operation is defined for all nonzero numbers a and b by a b =
[#permalink]
21 Sep 2022, 05:07
Given: \(a@b=\frac{a}{b}-\frac{b}{a}\), for all nonzero numbers \(a\) and \(b\).
I. \(x@(xy) = x(1@y)\): \(LHS=x@(xy)=\frac{x}{xy}-\frac{xy}{x}=\frac{1}{y}-y\) and \(RHSx(1@y)=x(\frac{1}{y}-y)\) as you see LHS doen't equal to RHS;
II. \(x@y = -(y@x)\): \(LHS=x@y=\frac{x}{y}-\frac{y}{x}\) and \(RHS=-(y@x)=-(\frac{y}{x}-\frac{x}{y})=\frac{x}{y}-\frac{y}{x}\) --> LHS=RHS;
III. \((\frac{1}{x})@(\frac{1}{y}) = y@x\): \(LHS=(\frac{1}{x})@(\frac{1}{y})=\frac{y}{x}-\frac{x}{y}\) and \(RHS=y@x=\frac{y}{x}-\frac{x}{y}\) --> LHS=RHS.
Answer: E (II and III).