Two concentric circles $P$ and $Q$ have radii $r$ and $R$, $r<R$. If a
[#permalink]
26 Feb 2025, 12:56
$\(\mathrm{P} \& \mathrm{Q}\)$ are two concentric circle having radii $\(\mathrm{r} \& \mathrm{R}\)$ respectively, where $\(\mathrm{r}<\mathrm{R}\)$.
The area of the smaller circle i.e. circle $\(P=\pi r^2 \&\)$ the area of the bigger circle i.e. circle $\(Q=\pi R^2\)$
It is given that the area of the smaller circle i.e. circle $\(P\)$ is equal to the difference in the areas of the two circles, so we get $\(\pi r^2=\pi R^2-\pi r^2\)$ i.e. $\(2 \pi r^2=\pi R^2 \Rightarrow r=\frac{R}{\sqrt{2}}\)$
Hence the value of $\(r\)$ in terms of $\(R\)$ is $\(r=\frac{R}{\sqrt{2\)$, so the answer is (D).