Carcass wrote:
What is \((1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3 }- \frac{1}{4}) + (\frac{1}{4 }- \frac{1}{5})\)?
Given: \((1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3 }- \frac{1}{4}) + (\frac{1}{4 }- \frac{1}{5})\)
Remove brackets: \(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3 } - \frac{1}{4} + \frac{1}{4 }- \frac{1}{5}\)
At this point we can see that the six middle fractions all cancel out (e.g., \(- \frac{1}{3} + \frac{1}{3 } = 0\))
So we end up with: \(1 - \frac{1}{5}\), which we can rewrite as \(\frac{5}{5} - \frac{1}{5}\), which evaluates to be \(\frac{4}{5}\)
Answer: \(\frac{4}{5}\)