Carcass wrote:
If \(kxyz ≠ 0\), \(\frac{x}{y} = k\), and \(\frac{z}{y} = \frac{3}{k}\), which of the following is equivalent to the expression \(\frac{x}{z}\)?
(A)\( \frac{1}{3k}\)
(B) \(3k\)
(C) \(\frac{1}{3}\)
(D) \(\frac{k}{3}\)
(E) \(\frac{k^2}{3}\)
First recognize that \(\frac{x}{y} \div \frac{z}{y} = \frac{x}{y} \times \frac{y}{z} = \frac{xy}{yz} = \frac{x}{z}\)
In other words: \(\frac{x}{z} = \frac{x}{y} \div \frac{z}{y}\)
No substitute for the given values into the above equation to get: \(\frac{x}{z} = k \div \frac{3}{k} = k \times \frac{k}{3}= \frac{k^2}{3}\)
Answer: E