Carcass wrote:
If \(x \neq 0\) and \(y=\frac{x+1}{x} -1\), what is \(\frac{1}{y}\) ?
A. \(x\)
B. \(\frac{1}{x
}\)
C. \(-x+1\)
D. \(\frac{x+1}{x-1}\)
E. \(-(x+1)\)
Kudos for the right answer and explanation
Key concept: If \(y = \frac{a}{b}\), then \(\frac{1}{y} = \frac{b}{a}\)Take: \(y=\frac{x+1}{x} -1\)
Rewrite \(1\) as \(\frac{x}{x}\) to get: \(y=\frac{x+1}{x} -\frac{x}{x}\)
Combined numerators to get: \(y=\frac{(x+1) - x}{x}\)
Simplify to get: \(y=\frac{1}{x}\)
Apply
key concept to get: \(\frac{1}{y}=\frac{x}{1}\)
Simplify: \(\frac{1}{y}=x\)
Answer: A
Cheers,
Brent