|
||||||
GRE Question of the Day (September 11)MathThe sequence of numbers \({a_1}\), \({a_2}\), \({a_3}\), . . . , \({a_n}\), . . . is defined by \({a_n}\)\({= \frac{{1}}{{n}} - \frac{{1}}{{(n+2)}}}\) for each integer \({n ≥ 1}\). What is the sum of the first 20 terms of this sequence? A. \({(1+\frac{{1}}{{2}}) - \frac{{1}}{{20}}}\) B. \({(1+\frac{{1}}{{2}}) - (\frac{{1}}{{21}}+\frac{{1}}{{22}})}\) C. \({1 - (\frac{{1}}{{20}}+\frac{{1}}{{22}})}\) D. \({1 - \frac{{1}}{{22}}}\) E. \({\frac{{1}}{{20}} - \frac{{1}}{{22}}}\)
Correct Answer - B - (click and drag your mouse to see the answer) |
[0] Comments to this Article